Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Physiol Biochem ; : 1-18, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35061559

RESUMO

This study evaluated if salidroside (SAL) alleviates high-fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) by downregulating miR-21. Rats (n = 8/group) were treated for 12 weeks as normal diet (control/ND), ND + agmoir negative control (NC) (150 µg/kg), ND + SAL (300 mg/kg), HFD, HFD + SAL, HFD + compound C (an AMPK inhibitor) (200 ng/kg), HFD + SAL + NXT629 (a PPAR-α antagonist) (30 mg/kg), and HFD + SAL + miR-21 agomir (150 µg/kg). SAL improved glucose and insulin tolerance and preserved livers in HFD-fed rats. In ND and HFD-fed rats, SAL reduced levels of serum and hepatic lipids and the hepatic expression of SREBP1, SREBP2, fatty acid (FA) synthase, and HMGCOAR. It also activated hepatic Nrf2 and increased hepatic/muscular activity of AMPK and levels of PPARα. All effects afforded by SAL were prevented by CC, NXT629, and miR-21 agmoir. In conclusion, activation of AMPK and upregulation of PPARα mediate the anti-steatotic effect of SAL.

2.
Int J Toxicol ; 39(5): 477-490, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32856499

RESUMO

This study investigated whether the mechanism underlying the neurotoxic effects of cadmium chloride (CdCl2) in rats involves p66Shc. This study comprised an initial in vivo experiment followed by an in vitro experiment. For the in vivo experiment, male rats were orally administered saline (vehicle) or CdCl2 (0.05 mg/kg) for 30 days. Thereafter, spatial and retention memory of rats were tested and their hippocampi were used for biochemical and molecular analyses. For the in vitro experiment, control or p66Shc-deficient hippocampal cells were treated with CdCl2 (25 µM) in the presence or absence of SP600125, a c-Jun N-terminal kinase (JNK) inhibitor. Cadmium chloride impaired the spatial learning and retention memory of rats; depleted levels of glutathione and manganese superoxide dismutase; increased reactive oxygen species (ROS), tumor necrosis factor α, and interleukin 6; and induced nuclear factor kappa B activation. Cadmium chloride also decreased the number of pyramidal cells in the CA1 region and induced severe damage to the mitochondria and endoplasmic reticulum of cells in the hippocampi of rats. Moreover, CdCl2 increased the total unphosphorylated p66Shc, phosphorylated (Ser36) p66Shc, phosphorylated JNK, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, cytochrome c, and cleaved caspase-3. A dose-response increase in cell death, ROS, DNA damage, p66Shc, and NADPH oxidase was also observed in cultured hippocampal cells treated with CdCl2. Of note, all of these biochemical changes were attenuated by silencing p66Shc or inhibiting JNK with SP600125. In conclusion, CdCl2 induces hippocampal ROS generation and apoptosis by promoting the JNK-mediated activation of p66Shc.


Assuntos
Cloreto de Cádmio/toxicidade , Hipocampo/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , NADPH Oxidases/metabolismo , Síndromes Neurotóxicas/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Animais , Apoptose/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Células Cultivadas , Dano ao DNA , Hipocampo/metabolismo , Hipocampo/patologia , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Síndromes Neurotóxicas/genética , Síndromes Neurotóxicas/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética
3.
Sci Total Environ ; 728: 138832, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32353801

RESUMO

The neuroprotective effect of Kaempferol against cadmium chloride (CdCl2) -induced neurotoxicity is well reported. The silent information regulator 1 (SIRT1) and poly (ADP-Ribose) polymerase-1 (PARP1) are two related cellular molecules that can negatively affect the activity of each other to promote or inhibit cell survival, respectively. It is still largely unknown if the neurotoxicity of CdCl2 or the neuroprotection of Kaempferol are mediated by modulating SIRT1 and/or PAPR1 activities. In this study, we tested the hypothesis that CdCl2-induced memory deficit and hippocampal damage are associated with downregulation/inhibition of SIRT1 and activation of PAPR1, an effect that can be reversed by co-treatment with Kaempferol. Rats (n = 12/group) were divided into 4 groups as control, control + Kaempferol (50 mg//kg), CdCl2 (0.5 mg/kg), and CdCl2 + Kaempferol. All treatments were administered orally for 30 days daily. As compared to control rats, CdCl2 reduced rat's final body weights (21.8%) and their food intake (30%), induced oxidative stress and apoptosis in their hippocampi, and impaired their short and long-term recognition memory functions. Besides, the hippocampi of CdCl2-treated rats had higher levels of TNF-α (197%), and IL-6 (190%) with a concomitant increase in nuclear activity and levels of NF-κB p65 (721% & 554%). Besides, they showed reduced nuclear activity (53%) and levels (74%) of SIRT1, higher nuclear activity and levels of PARP1 (292% & 138%), increased nuclear levels of p53 (870%), and higher acetylated levels of NF-κB p65 (513%), p53 (644%), PARP1 (696%), and FOXO-2 (149%). All these events were significantly reversed in the CdCl2 + Kaempferol-treated rats. Of note, Kaempferol also increased levels of MnSOD (73.5%), and GSH (40%), protein levels of Bcl-2 (350%), and nuclear activity (67%) and levels (46%) of SIRT1 in the hippocampi of the control rats. In conclusion, Kaempferol ameliorates CdCl2-induced memory deficits and hippocampal oxidative stress, inflammation, and apoptosis by increasing SIRT1 activity and inhibiting PARP1 activity.


Assuntos
Cloreto de Cádmio , Quempferóis , Animais , Hipocampo , Transtornos da Memória , Estresse Oxidativo , Poli(ADP-Ribose) Polimerase-1 , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...